X^2+(y-8)=41^1(2-7)^2

Simple and best practice solution for X^2+(y-8)=41^1(2-7)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+(y-8)=41^1(2-7)^2 equation:



X^2+(X-8)=41^1(2-7)^2
We move all terms to the left:
X^2+(X-8)-(41^1(2-7)^2)=0
We add all the numbers together, and all the variables
X^2+(X-8)-(41^1(-5)^2)=0
We add all the numbers together, and all the variables
X^2+(X-8)-1025=0
We get rid of parentheses
X^2+X-8-1025=0
We add all the numbers together, and all the variables
X^2+X-1033=0
a = 1; b = 1; c = -1033;
Δ = b2-4ac
Δ = 12-4·1·(-1033)
Δ = 4133
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{4133}}{2*1}=\frac{-1-\sqrt{4133}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{4133}}{2*1}=\frac{-1+\sqrt{4133}}{2} $

See similar equations:

| -7x-10=67 | | a2-14a=-45 | | X/6+x/2=180 | | F(x)=x+12/2x-10 | | (x-6)^=50 | | -2x-6=-6x+5 | | 33-v=176 | | X-5/14+3-2x/7=11-x/4-3 | | 33-v=-26 | | (3)/(4x)-3.2=5.3-(2x)/(3) | | 1/3+x/3=10/3 | | 3x+5=-9-18 | | a^2-3.5a-1.5=0 | | 4+5u=-26 | | 24-5x+x^2=0 | | 0=2x^2+6-3x | | 5.2+w/5=7.3 | | Y=1.3x-8 | | 7x^2-60=0 | | X+y=1/5 | | H(t)=-16t^2+140t+5 | | Z+w=1/5 | | x+(7-x)-5=0 | | 9000^2-6000x-15000=0 | | 44x+36=532 | | 24x+9=33 | | 18w^2-24w-8=0 | | 32(3x)-33(5)=32(7) | | C=190.00+0.15x | | 2x+x/2=35 | | 29=3^x | | 46.2x10^-2=x |

Equations solver categories